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SUMMARY

Geometric optics methods are applied to find the trajectories
of rays in a cone-shaped ionized wake, in which the concentration of
free electrons depends on the coordinates r, ©. The variation in the
density of flux's energy in the direction of the ray, having passed
across the ionized medium is also determined without taking into account
the energy in this medium.

*
*« *®

When an ionized point source moves in the atmosphere, there forms
behind it a wake, in which the distribution of the concentration of free
electrons is dependent on two coordinates. The concentration of free elec-
trons gradually decreases along its axis, approaching zero. In cross sec-
tions it has its maximum value on the axis and it decreases toward the
wake's boundary to zero. In order to estimate the influence of free elec-
trons,; emerging in the wake under the action of the ionization source, on
the propagation of radiowaves , we may postulate that the variation of
the concentration of free electrons in wake's cross section takes place
proportionally to (6,2 — 02), where 6, is the coordinate defining the boundary
of the wake, and along the wake it takes place proportionally to r'a,
where r is the distance from the source to the point considered on wake's
axis. The wake has a shape of a cone with the source at its summit., In
order to simplify the c¢alculations, we shall discount in the following
the source's motion; in other words, we shall determine the trajectories
of rays in a fixed ionized cone with the above-indicated concentration of

free electrons.

* RASSEYANIYE LUCHEY ELEKTROMAGNITNYKH VOLN KONUSOOBRAZNYM IONIZIROVANINIM
SLEDOM.




The choice of the dependence of the concentration of free electrons
along the axis of the wake in the form r"2 is determined by the condition
of separation of curvilinear coordinates in the eikonal equation. In the
weke's cross section the choice of dependence on © of electron concentra-

tion may be rather arbitrary.

P(Z5, Yo, 29)

Fi,\;o l

#1, = TRAJECTORIES OF RAYS.

In a syherical system of coordinates (r, 9 0), of which the origin
coincides with the summit of the cone and the axis 0Oz is directed along
the axis of the wake (Fig. 1), the distribution of electron concentration
has the form

N(r, g, 8) = No%;:—zﬁ)z—;;gt, n
where 6, 1is the coordinate of wake's boundary. Since thc wake is axisymretric
N(r,9,8) coes not depend on ¥, that is, N(r, ¢, 0) = N(r,0).
The relative dielectric constant of the icnized wake is
__ 4neNo(00* — %) re? . (2)
m(w? 4+ v¥)r2 0o

3r=1

Within the bounds of geouetric optics the motion of an electromagne=-
tic wave in an ionized wake is determined with the help of a family of
equiphasal surfaces perpendicular to the rays. These surfaces I == const
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satisfy the nonlinear differential equation [{, 2]
(VL)?==n?, niu=e,. - (3)

In the orthogonal curvilinear system of coordinates (ql, 9 q3)
the eikonal equation may be represented in the form

1 (?L)2 (‘1 aL)" ( 1 c’)L)2 .
il — = — ) =ne 4
(hu?q; t hy 0, + hs 0gs " ‘ -‘()
where hl' h2, h3 are Lamé coefficients.
In spherical coordinates,(3),taking into account (2), can be written
as follows :

(5 + s () =122

where _ 4neNy nt ' )

T Tm(e? +v3) 6

The general integral of (5) may be constructed by the method of
variable separation, postulating

L = fi(r) + f2(9) + 1s(0). (6)
Integrating, we shall have

f) =\ VI—ad/ridr, fi(e)= a9 +as,
Ro
.8 ' (7)
£3(6) = { Yai? — 03(8eF — €2) — a7*/sin?6 db,
B
The total integral of (5) is equal to the sum of integrals (7),

which depend on three constants 811 859 853 at the same time from az additively

3
L=1%(r, ¢, 8, a1, a:) + as. (8)
According to the Jacobi theorem [2], when the solution of the eikonal

equation is known, the corresponding family of rays is determined by the

equalities Py
—$(r, 9, 0, ay, 33) = C; (i=1,2), (9)
6a¢
where 81 a5 Cl and 02 are aritrary constants, defining any two points



b,

through which the ray passes, or the point crossed by the ray in the given
direction,
Taking into account (7) and effecting the differentiation of (9), we

we shall obtain a system of equations determining the corresponding family

of rays
§ a.dr Se ay sin 0do =C
- 1
arir—ad o 1la?—b3(8s — 6)]sin’ 0 — as®
M ,
o—1§ el =0

. 8in0 Yias® — b2(0, — 62)]sin? 8 — az®

We shall select the constants C and C, from the condition that
1l 2

the point Re, @0 6 lay on the ray. Consequently,

§ ar S’ sin 0 do
et W L= ——— )
RV —ad  ; Ylad— b3 (68— 07)]sin?0 —ap®

I a,d0 - (10)

5,50 07122 — 52 (8% — 02)] sin? 6 — a2

or F) — 0, FO = 0.

The system of equations (10) defines the trajectories of the rays
passing through the point Py(Ro, o, 8) The direction of the ray's motion

at that point is given by the constants a, and a In order to determine

the constants a; and 2,9 it is necessary éLo ass:'.g'z;2 the plane wave front
equation for the wave incident upon the ionized wake, or that of an arbitrary
ray normal to that plane. Of the aggregate of rays defining the plane wave
the remaining ones will be collinear with them. The plane, normal to the
central ray, is the wave front plane., It is always possible so to select

the system of coordinates that the axis of the wake and the central ray

lay in the plane xoz. Then the axis oy will be parallel to the wave front

and the front plane equation may be written in the form

Az+4Cz+D=0. (11)
The equation for the ray passing through the point P (xo"yo' zo)
lying in the plane of the wave front, may be written as follows :

(x—2) /A= (z—12)/C, y=1rh.
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The intersection of this ray with the conical surface of the wake,

having for equation
zztg? 8 = 22 + 3

will take place at the point P,y of which the coordinates are determined
from the system of equations

(z—20) /A= (z—2)[C, ZFigb=2+1* y=y.

Resolving the system of equations and passing to spherical coordi-
natesy we shall obtain

. Resin By
b | '—yf—+(zo—26t8'v)’
. =£ A =tgyoosﬂo(zo—-zotgy) B, = sin2 0,
BY=T AT T A giyese) | (1 — tgby cos2 6y)

‘ Ry=A4,+ "IA‘z -+ B!z, | o = arc sin Yo y Bo= 0o,

Thus, we have found the coordinates of the point at wake's surface,
from which the ray propagates inside the wake in a nonuniform medium.
The vector T equation in a spherical system of coordinates, when

this vector is tangent to ray trajectory at am arbitrary point inside the

the wake, is thendetermined as the vectorial product of function's F(l)
gradient
9 alf'(‘)e 4 BF“)-e
( VRO = et 2 50
and function's F 2) gradient
31" 1 8r®
2) — ————e9.
VF or er r 00 e
Consequently,
aFW §F® . OFW gF® BF™ §F®)
T————é—o— 3o e,—rsind 30 eptr ar oo eo. (12)

At the point Pb the vector T mnust be collinear with the incident
rayy of which the unitary vector in the spherical system of coordinates may

be represented in the form

= — (cos a sin 0 cos ¢ - cosy cos B) e, 4 cos a sin ey —
— (cos a cos p cos 8 — cos y sin 0)es, (13)

where S
a=arcigC/A.
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The vectors of T and s, at the point P, are collinear if

— OFW/3r v cos a cos go cos By — cos y sin By

- 9FW/38 p,  cosacossin By cosycoshy |

' 2) : (14)
— sin®, 0F®/60 €os a sin @

3F®]6g |p, (00 4.c0S Po coS B — 003 ysin 8) ’

Substituting in (14)
OFW 6F® gF@ HF@
or’ 98 ' 98’ og '

determined on the basis of (1), we shall obtain

Ya,2 sin2 @y — az? €08 @'c0S Qo €088y — cos y sin By
YR2 —a?sinB,  cos @ cos @pcos By + cos y cos By
az - cosasingo ,

(15)

Ya2 sin? 6, — a2 €OS € ¢S (g ¢0S B — cos y sin B

Resolving the system of equations (15) relative to unknowns a; and ap,
we shall have

a = Re*[cos? a sin? go + (cos @ cos go cos Bp — cos y sin 8,)2] / E, (16)
' a? = R¢? cos? a sin® o sin2 02 / E, (17)
vhere

E = (cosa cos s cos 8 4 cos y cos 0,) 2 + cos?a sin? gy +
~+ (cosa cos o cos By — cos y sin 6;)32,

Let us study the trajectories of rays incident upon the ionized wake
in the plane (p=$o=0 at further length. In this case, first of all, at
the above made observations on the system of coordinate selection

a+y=mn/2 (18)
and, secondly, according to (16) and (17), the guantities a; and ay are
respectively equal to )
ay = Ry sin (y — 6), a3 = 0. o ., (19)
Consequently, the trajectories of rays in the wake are determined by
the first equation of the system (10).

’ 4 |
§armim—ei=(awpa—vmi—m = (o
Ry G ‘

and they too lie in the plane ¢=$o;_,0_
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The tangent of the angle between the tangent to the ray at the
arbitrary point inside the wake and the radius-vector r may be determined
from (14), but in the given case it is simpler to find it from (20):

tg H = r%f- w23 — b (65 — 6%) /Y — a7’ @

Analysis of (21) shows that when the tangent to the ray coincides
with the radius-vector (tgH = 0), the condition
a? = *(6s2 — 62), (22)
must be satisfied; this condition determines the cnordinate of the point of
ray's rotation in the wake as a function of the concentration of free elec-
trons in it and of its geometric dimensions. It follows from (22) that the
rotation of the ray takes place at wake boundary 0=40, when the concentration
of free electrons on wake's boundary increases to infinity (b?— ). The radius-
vector of the point at which ray's rotation takes place at p_, o is, accord-
ing to (20), equal to R,. Consequently, the reflection of the ray from the
boundary of the wake takes place in this case as if it were from a metallic
surface, If b << o, the ray's rotation takes place at the point of which the
coordinate 8y is determined by the equation
02 = 002 — a2/ b2, ! (23)
The coordinate r; of this point is determined after integrating (20)
and substituting (23) in the expression obtained after the integration

| — -1
ry= a,{cos I[arc co§ ay/Ro+ zgg-lng:;:T: ]} . (24)

When 831= 0, the ray is reflected from the axis of the wake and the
condition (22) has the form

a2 = b%@ Or Resin? (y— 6) = b%e% (25)

Therefore, for the given concentrations of free electrons and wake
widening (angle 8,)y the rays will pass through the wake only at quite spe-
cific values of R, and %Y. The rays having crossed the wake undergo dis-
tortion. As they drift away from wake's pole, the distortion of the rays
decreases, which is easy to establish according to (21) and taking into
account (20),



The expression (21) allows to _find the angle H between the radius-
vector and the ray at the point of ray's incidence on the boundary of the
wake as well as at the point Py(R;0,680),where the ray crosses the wake's
boundary when emerging from it. Integrating (20), we find the value of Ry

. ' eob -—ay —t
Ry= { [ L0 ]} 26
3= a1 cos | arc cos ay/Ry + > In o Ta (26)

Substituting (26) into (21), we shall determine the an;le Hp at
the point P,

_ _ _a_i‘ (ﬂob —_— a,) ‘
Hy=Hy— -l @1

where H, is the angle between the radius~-vector and the ray at incidence
point.

It follows from (27) that |Ha||Ho|. ‘hen the concentration of free
electrons on the axis of the wake incr:uses, the angle |H,|=|H,| and
within the bounds |Hz|->|Hol at - o0. If the incident ray propagates along
the wake's boundary so that H =sin(y—8) =0, H, =H, in that case too.
This means that the ray propasates rectilinearly.

Finally, let us find the condition at which the radioray, incident
upon the wake, is reflected strictly backward. Formula (21) defines the
angle between the tangeant to ray trajectory and the radius-vector of the
point. At the point P> we must have Hy= —Ho+ n.

Substituting H, 4in (27), we obtain

] B2 bt
with, at the same time R;= Ro. This ecguality is fulfilled when the ray
propagates in an ionized medium “{’VW‘ ater values of r to smaller ones.

If the incident ray propagates perpendicularlyvto cone's generatrix,
in the plane xoz (angle H, = X/2), the angle Hy will be smaller than %/2.
We shall have Hp = —H, + X only when the equality (28) is fulfilled.

That is why (28) is the condition for the mirror reflection of the ray from
the ionized wake, in which the concentration of free electrons varies accord-
ing to the law (1), In this case the value of Hy is determined from the

equation

00/00
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ox [ (ﬂ — ZHo)b ] . eob/Ro+ sin Ho '

= . 29).
Ro sin Ho Gob/Ro — sin Ho ( 9)

Therefore, when the wake 1is investigated by radar, it may be detect-
ed only at irradiation from directions defined by the angles of H, accord-
ing to (29). The wake mzy be observed in the spherical cirecle defined by
Go<<y<<n/2+4 6 ’

As an example, let us find the pointsof reflection .of rays, coplanar
with the plane xo0%z . To that effect we shall determine the angle H between
the vector ®, tangent to ray trajectory at an arbitrary point inside the
wake and the coordinate plane in which lie the orts e mnd e, It follows
from (12) and (10) that

tg H = Y{[a® — b2(02 — 62) Jsin? 6 — az2} ] [sin? O(® — as?) — az]. (30)

When tgH = O, the vector T lies in the coordinate plane of orts
an? eg; from that moment the ray turns and begins to emerge from the wake.
The ccordinate ©3 of the rotation point may be found from the expression

[lhz — bz(eoz — 9,2)]sin 0 — a? =

which follows from (30). At 0, << 0, <<n/2

02 ~ Tm(ﬂo’bz—a:“)[i + V4 + 4a6%/ (825* — a?)] (31)

Knowing ©,4 we determine the remaining two coordinates, that is,
those of the ray rotation (r,@:) :crording to equations (10). It is then
necessary to bear in mind thct in (10) we have @o==0 at the expense of
the choice of coordinate system. Since the angle 6, is small, the integrals
in (10) may be taken provided we postulate sin6 =~ 0. Then

§ _ § 040 ’

A > -" ap Vi — b2(02 — 69)]6% — a?
& ad .

§. 87iar — b(0F — 69O — o

b _ bog
o= o ) B,=arccos——-‘—liln 207 +af — 0

cos By Ry 2b  2bYVa?0e® — a2 + 00*b2 +- as? )
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Upon the substitution of the variable 0*= §i1the second integral
may be written in the form

e’
@y == S = azdg ==
oo Vol — B} (6 — £)]E — af
_2a24(000 7 ad)0? L 200° (%02 — ) 07 ] ‘
062y (a® — 06%b%)2 + 4aq?bt 0437 (@52 — 02b3)? -+ 4ag2b2

1 . _

=_é [-arcsm (33)
Therefore, the expressions (31), (32) and (33) define the coordi-
nates of the rotation poinf of the ray Pi(r,®1,01). After the rotation point
the ray wlll pass to the boundary of the wake emerging from it. The point
of wake surface's intersection by the ray Pi(r:; 92, 8) is determined by the
system of equations (10) and the equation 0 =0, Taking into account the
direction of integration in (10), and after fairly simple transformations,
we shall obtain the coordinates of the point P,
ay

cosB: ' (34)

B S L 2b%0,% + a,® — 6,20
2 = &rc cosRo b (2b7a0e — aZ + 082b% + a?)

P2 =2¢1, 6= 6o (35)

r’=

After the point P,, the ray is situated beyond the wake and propc-

gates rectilinearly in the direction of the vector T, defined at the point
Pao

#2. -~ DENSITY VARTATION OF ENERGY FLUX IN THE PROPAGATION DIRECTION OF
THE REFIECTED RAY

The ray emerges from the wake at the point P,. The coordinates of
this point in the rectangular system of coordinates are
Zz =ryc08 g2cos Oy, y2==Trzcos g;8in 0, 2z = rzcos Bo.

The ort projection of the ray at the point P2 may be written in
the rectangular system of coordinates in the form

T, = T, sin 0, cos P2 — Ty sin @3 + T cos @z cos Oy,
Ty = T,cos g2+ Tycos gz + To sin gz cos Oy,
T, = T, cos 0p— T sin 0.
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Since T, 1is a unitary vector, TXJ'ry, T, are equal to the direc-
tion cosines of the vector T, in the rectangular system of coordinates.
The equation of the line passing through the point P2 parallelwise to
the directing vector T, will be represented in the form

T—T _Y—y_ 2—%
T. T, - T,
This line will cross the sphere having the center at coordinate
origin at the points Pz, Py, of which the coordinates are determined by
the system of equations

T—m Y~ _3—%h .

Ayl 22—
T, T, T, 24 yr4-3 Re,

One of these points is the point of observations, Its coordinates

zy = —T.T.rs 4 [TAT 22 -+ T2R? — To?ry? sin® 6y +
+- r?(Ty sin @z cos By - T’ cos 2)2 + z21',
ys = (Ty/ Tx) (zs — 22) +'y2, 25 == (T; [ T:) (23— 22) + 2.

Since the coordinates of the point P3 are known, the radius-vector
of this point in the vectorial form is

"R = x3i + ysi + z3k.

The elementary area of the receiving device is situated at the
point P3; it is so oriented that the direction of the vector normal to
its surface coincides with the direction of R.

The flux of energy through the elementary area ds, , cut out on
the surface of the incident wave front, remains constant within the linmits
of the tube formed by the rays, passing along the boundary of the element-
ary area, provided we neglect the losses of electromagnetic energy in the
ionized medium, The energy flux through dso is

S.d "—"'So dZodyo ,

cos a

where it is taken into account that the density vector of emergy S, flux
is collinear to the vector of the elementary area ds,.
The second elementary area is formed as a result of intersection



1z,

of the tube of rays by a surface perpendicular to vector R (sphere).

If in the plane of the incident wave front the ray is displaced
in the direction of the axis 02, the ray reflected from the wake will
also have its direction changed. That is why the vector R will have an
accretion @ﬂl/d%yk%f provided the incident ray shifts in the front plane
along the direction of the axis 0z % The elementary area ds at the point
of observation may be determined by the formula

k R & A]“
=| — —dyo| .
des [dzod"’? dyo
The flux of energy through that area is

dR dR
Sd83 = STo [—d—z—o dZo, ;i"o dyo ]

According to the law of energy conservation Seds,= Sds;, Hence, the
energy flux density at the point of observation is

S = So/cosaTo[dR dR]

3’ dgel’ (36).

Consequently, formula (36) allows to determine the density of
energy flux for every ray having crossed the ionized wake, provided we
neglect the energy absorption along its trajectory.

In order to establish the direct dependence of the energy flux
density on the direction of ray incidence, on wake geometry and on the
coordinates of the point of observation, it is necessary to transform the
scalar-vectorial expression entering in (36). Inasmuch as the module of R
is a constant quantity, we have

S'=Sy/ R*cos a'To [dr, / dz, dl'ov / dyo], (37)
where

. T Yy Z
ro—oprR, ro= Zosi+ Yosj + 205k, ‘xoa=l—;—, yo =g = (36)

Expressing r, and T, through their projections on the axis of the
rectangular system of coordinates, we shall obtain

* Analogously R will have will have an accretion oo/ oo
(dR/dyo)dyo, if -the incident ray shifts from the front plane
in the dircetion of the axis -9¥.
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§ = Sy [( Olos 0% _ a[/oa 0Zos ) ( 0203 Ozg3 _ 0zo3 0zg3 )
Recosal\ dy, 9z, dzq dyo 0z 0z 820 By

( JYos 61'03 _ 0Yo3 Oxos )]"

Oyo 03 08z Oy (39)

Thus, formula (39) allows us to compute the energy flux density
in the direction of the vector T, tangent to ray trajectory at the point Po.
Let us find, as an example, the re-emission pattern of the wave
plane by the wake in the plane =0 at radar irradiation of the wake.
It will reflect toward the side of the radar station provided the condi-
tion (28) is satisfied., In this case the density of energy flux in the
direction toward the radar station may be found from the formula

o SoRg? sin 2H, . . 242209 cos Hy !
S A W [(ﬂ— 2Ho)008Ho+SlIlHo+m ]
* [ 2sin?Ho +1, . 2a,Rosin (Ho + 60) ]'—t
2 1 B (5200 — ag2) (40)

Since the guantity a, = Rosin Ho = const, there may be, for every
selected ray having Ro =ROi’ only one direction HOi’ in which the wake
may be detected by radar. But from the conjunction of rays forming a plane
wave, we may select R, in the sector 40 <y<n/246, (0 <Ho<<n/2)
in such a way, that the wake reflects in the direction HOk: strictly beack-
ward. The density of energy flux will in each case be determined by (40),
where r <R, 0,<<n, b is limited (b < ).When b— o0, the radar detection
of the wake is possible at sinHoy—n/2. If b decreases, the rays are not
reflected from the wake at 0020 —a2<< 0.

ren THE END ==«
Received on 4 May 1964.
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